revista de cultura científica FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
Busca ampliar la cultura científica de la población, difundir información y hacer de la ciencia
un instrumento para el análisis de la realidad, con diversos puntos de vista desde la ciencia.
  P01 P02  
 
 
     
Breve cronología de la genética
 
Jorge González Astorga
conoce más del autor

   
 
 
HTML ↓
PDF Regresar al índice artículo siguiente
     
La genética es uno de los puntales teóricos más importantes de la biología contemporánea, y sin embargo es una ciencia relativamente nueva. Es por eso que la construcción de la genética durante el siglo xx constituye uno de los retos intelectuales de mayor calibre. Y aunque la genética es una ciencia de este siglo, que inicia formalmente con el redescubrimiento de las leyes de Mendel en 1900, no fue sino hasta 1906 que William Bateson acuñó el término y escribió el primer libro de genética: Mendel’s Principles of Heredity: A Defence. Para esto, los avances teóricos y metodológicos del siglo xix fueron trascendentales en el fundamento de las bases de la genética del siglo xx.
 
Durante la segunda mitad del siglo xix, en el periodo de 1850 a 1900, la biología surgió de los últimos vestigios medievales y aristotélicos, generándose una visión unificada cuyo paradigma no es esencialmente distinto del nuestro. Por una parte, la teoría celular se había establecido ya en la década de los treintas, pero en 1858 el fisiólogo alemán R. Virchow introdujo una generalización adicional: el principio de la continuidad de la vida por división celular, que en síntesis se contempla en una frase célebre: omnis cellula e cellula. Con esto, la célula quedó establecida como la unidad de la vida y reproducción de los organismos. Este reconocimiento, como unidad de reproducción y continuidad, llevó a la generación espontánea y al preformacionismo a los terrenos de la metaciencia. En este sentido, cualquier organismo se origina de una simple célula mediante un proceso de ontogénesis, a través de sucesivos pasos de diferenciación de un huevo indiferenciado. Esto hace a la célula el contenedor de las potencialidades para generar un organismo. Este planteamiento teórico llevó a la búsqueda de la base material de la herencia.
 
A mediados del siglo xix, Darwin introdujo en El origen de las especies la segunda unificación importante de la biología, esto es: la teoría de la evolución biológica. Fundamentalmente, Darwin explica que las formas orgánicas existentes proceden de otras distintas que existieron en el pasado, mediante un proceso de descendencia con modificación. Para llegar a esto sintetizó sistemáticamente evidencias procedentes de muy diversas disciplinas de la ciencia de la época, como son la geología, donde tomó el principio del uniformitarismo de Charles Lyell; la paleontología, que cimentó su planteamiento sobre las relaciones ancestro-descendencia y sobre la distribución de las especies a nivel macrogeográfico; también, su gran experiencia como naturalista le permitió conocer la gran diversidad y variedad de organismos que se distribuyen en los trópicos; esto lo llevó a entender, en parte, la importancia de las relaciones inter e intraespecíficas como fuerzas motoras de la evolución; por último, y no menos importante, la influencia de las teorías socioeconómicas de Thomas Malthus y Adam Smith fortalecieron aún más su planteamiento teórico. Con estos antecedentes, la síntesis de estas disciplinas convergieron en una explicación de un proceso natural para la evolución orgánica: la selección natural. Con la finalidad de imponer esta concepción Darwin incorporó una nueva y radical perspectiva: el pensamiento poblacional. En contradicción con la visión esencialista dominante en su tiempo, la variación individual, lejos de ser trivial, era para Darwin la piedra angular del proceso evolutivo. Son las diferencias existentes entre los organismos al seno de las poblaciones las que, al incrementarse en el espacio y en el tiempo, constituirán la evolución biológica. La teoría general de la evolución de Darwin fue casi inmediatamente aceptada por la comunidad científica, pero su teoría de la selección natural (teoría particular) tuvo que esperar hasta los años treintas del siglo xx para que recibiera la aceptación unánime.
 
Un hueco importante en el esquema de Darwin era el de la explicación del origen y el mantenimiento de la variación genética sobre la que opera la selección natural. Posterior a la publicación de El origen de las especies, en 1868, Darwin intentó explicar el fenómeno de la herencia a través de la hipótesis provisional de la pangénesis. Ésta es el resultado de un intenso trabajo de recopilación e interpretación de gran número de observaciones y experimentos, que se encuentran en un tratado de dos volúmenes: The Variation of Animals Under Domestication. Allí postula la existencia de partículas hereditarias o de reproducción, que llamó gémulas. Cada parte del organismo, e incluso partes de las células, producen sus propias y específicas gémulas; estas partículas fluyen por todo el cuerpo, de modo que en cada parte, como en los óvulos y espermatozoides, pueden encontrarse todos los tipos de gémulas. Para esto, las células reproductoras tienen la potencialidad de desarrollar un organismo completo. Contrariamente a las conclusiones a las que llegó en 1859, su hipótesis de la herencia resultó incorrecta, como se demostró posteriormente por, entre otros, su sobrino Francis Galton en un experimento de transfusión sanguínea recíproca entre dos líneas de conejos que diferían en el color del pelaje. De cualquier manera, el trabajo y entusiasmo de Darwin estimuló el pensamiento genético.
 
En 1865, tres años antes de la publicación del tratado de Darwin sobre la herencia, el monje austriaco Gregor Mendel publicó en el Boletín de la Sociedad de Ciencias Naturales de Brno su trabajo "Experimentos de hibridación en plantas", en el cual resume los experimentos que había llevado a cabo durante casi diez años en el frijol Pisum sativum. El trabajo de Mendel se enmarcaba dentro del paradigma de la teoría de la evolución, pues una de las razones para efectuar dicho trabajo era "alcanzar la solución a un problema cuya importancia para la historia evolutiva de las formas orgánicas no debería ser subestimada" (en sus propias palabras). En su base experimental está el paradigma del análisis genético y su trabajo es considerado el fundamento de la ciencia genética. La fuerza de este trabajo radica en un diseño experimental sencillo, aunado a un análisis cuantitativo de sus datos. Experimentalmente demostró que: i) la herencia se transmite por elementos en forma de partículas, refutando la herencia mezclada, y ii) que el mecanismo de la herencia sigue normas estadísticas sencillas, resumidas en dos principios. Pero el momento histórico no era aún propicio y el nuevo paradigma de la genética debería esperar más de treinta años guardado en los archivos de un monasterio del centro de Europa. Y en realidad no fue, como se ha creído, porque su trabajo fuera desconocido, sino porque los experimentos de Mendel fueron simplemente despreciados. Se sabe que Mendel intercambió correspondencia con el alemán Carl Nägeli, uno de los más prominentes botánicos del momento, quien no pareció muy impresionado por su trabajo y le sugirió a Mendel que estudiara otras especies vegetales, entre ellas una del género como Hieracium, en la que Nägeli estaba interesado. En ella Mendel no encontró normas consistentes en la segregación de sus caracteres y empezó a creer que sus resultados eran de aplicación limitada, por lo que su fe (que la debería tener por decreto) y entusiasmo en su labor como experimentador disminuyó. No fue sino hasta mucho tiempo después de la muerte de Mendel, en 1903, que se descubrió que un tipo especial de partenogénesis ocurre en Hieracium spp., lo que genera desviaciones muy significativas de las proporciones mendelianas esperadas. Debido al olvido y a la desidia de su trabajo, se puede afirmar que sin Mendel la genética posiblemente sería la misma, lo cual nos lleva a la conclusión de que cuando la historia se estudia como recapitulación de fechas y personajes nos hace percibir a los genios como simples pensadores de la época.
 
En la década de los setentas las técnicas citológicas emergentes, como el microtomo y las lentes de inmersión en aceite, condujeron al descubrimiento del proceso de la fecundación (la fusión de los núcleos del óvulo y del espermatozoide para formar el núcleo del huevo) y la mitosis. Por esa época Nägeli enunció la teoría del idioplasma, que establece que el núcleo celular es el vehículo de la herencia. En 1883 van Beneden, experimentando con el nemátodo Ascaris spp., descubrió el proceso de la meiosis, reconociéndose por fin la individualidad de los cromosomas. T. Boveri, entre 1888 y 1909, demostró que los cromosomas mantienen su estabilidad a lo largo de las generaciones. Así, a partir de 1880 existía un acuerdo generalizado de que el material hereditario residía en los cromosomas, aunque esto no estuvo completamente claro hasta 1916.
 
 
 
El embriólogo alemán August Weismann desarrolló en 1885 su teoría de la continuidad del plasma germinal. En ésta se reconocen dos tipos de tejidos en los organismos, el plasma somático y el plasma germinal, que en nuestros días vendría siendo el germen del fenotipo y del genotipo, respectivamente. El plasma somático o somatoplasma forma la mayor parte del cuerpo de un individuo, mientras que el germoplasma es una porción inmortal de un organismo que tenía la potencialidad de reproducir al individuo. A diferencia de la teoría de la pangénesis, el germoplasma no proviene del somatoplasma ni se forma nuevamente en cada generación, sino que constituye la continuidad de la información genética entre generaciones. La teoría de Weismann rechazaba rotundamente la herencia de los caracteres adquiridos haciendo un mayor énfasis en el material hereditario. Se le llamó neodarwinismo a la síntesis de la teoría de la evolución por selección natural y la hipótesis del plasma germinal de Weismann. En 1883 Weismann propuso la teoría de que las partículas hereditarias o bióforas eran invisibles, autorreplicativas y asociadas con los cromosomas de un modo lineal, postulando que cada biófora estaba implicada en la determinación de una característica o atributo. Esto nos lleva a pensar que su intuición fue realmente prodigiosa. En 1871 Fiedrich Miescher aisló nucleína de núcleos de células humanas de pus; hoy sabemos que esta nucleoproteína forma la cromatina. Posteriormente, en 1886, el citólogo norteamericano E. B. Wilson relacionó la cromatina con el material genético.
 
El siglo xx
 
Con el inicio del siglo xx se produjo una explosión de descubrimientos que revolucionaron a la ciencia de la genética y que continuaría a un ritmo vertiginoso. En la primera década se llevó a cabo la síntesis de los trabajos genéticos (hibridación experimental) y citológicos. Esta fusión simboliza a la genética en su mayoría de edad, iniciándose como una ciencia propia e independiente. Los albores del siglo xx iniciaron con el redescubrimiento de las leyes de Mendel por los trabajos de tres ilustres botánicos: Carl Correns, Hugo de Vries y Eric von Tschermak, a las que el británico William Bateson daría un gran impulso, generándose la integración de los estudios genéticos y citológicos. En 1902, Boveri y Sutton se percataron, de forma independiente, de la existencia de un estrecho paralelismo entre los principios mendelianos, recién descubiertos, y el comportamiento de los cromosomas durante la meiosis. En 1906, Bateson, quien en 1901 había introducido los términos alelomorfo, homocigoto y heterocigoto acuñó el término genética para designar "la ciencia dedicada al estudio de los fenómenos de la herencia y de la variación". En 1909 el danés Wilhelm Johannsen introdujo el término “gen” como “una palabra [...] útil como expresión para los factores unitarios [...] que se ha demostrado que están en los gametos por los investigadores modernos del mendelismo”.
 
 
 
Durante la segunda década de este siglo Thomas Hunt Morgan inició el estudio de la genética de la mosca de la fruta Drosophila melanogaster. En 1910 descubrió la herencia ligada al cromosoma X, así como la base cromosómica del ligamiento. Tres años después, A. H. Sturtevant construyó el primer mapa genético y en 1916 Calvin Bridges demostró definitivamente la teoría cromosómica de la herencia mediante la no disyunción del cromosoma X. En 1927 H. J. Muller publicó su trabajo en el que cuantifica, mediante una técnica de análisis genético, el efecto inductor de los rayos X de genes letales ligados al sexo en Drosophila. A principios de la década de los años treintas Harriet Creighton y Barbara McClintock, en el maíz, y Gunter Stern, en Drosophila, demostraron que la recombinación genética está correlacionada con el intercambio de marcadores citológicos. Todos estos descubrimientos condujeron a la fundación conceptual de la genética clásica. Los factores hereditarios o genes eran la unidad básica de la herencia, entendida tanto funcional como estructuralmente (la unidad de estructura se definía operacionalmente por la recombinación y la mutación). Espacialmente, los genes se encuentran lineal y ordenadamente dispuestos en los cromosomas como las cuentas en un collar.
 
Paralelamente a estos avances, un conflicto que había surgido en 1859 con la aparición de El origen de las especies de Darwin empezó a resolverse. Era el problema de la naturaleza de la variación sobre la que actúa la selección natural. Para esto, Darwin puso énfasis en la evolución gradual y continua que transforma la variación dentro de las poblaciones en variación entre poblaciones; otros, como Thomas Huxley, e inicialmente Galton (cuyo libro Natural Inheritance está considerado como fundador de la biometría) creían que la evolución ocurre de forma relativamente rápida y discontinua, por lo que la selección natural usaba principalmente variación discontinua, por lo que la variación continua no poseía ningún valor evolutivo a sus ojos. Con el fortalecimiento del mendelismo este antagonismo se acentuó hasta convertirse en un conflicto entre los biometristas, por un lado, apoyando la evolución discontinua o por saltos, y los mendelianos, por el otro, que estudiaban la variación en los caracteres físicos cuantitativamente y apoyaban la evolución darwiniana. Estos últimos tenían como cabeza teórica a Bateson, Morgan y Hugo de Vries, mientras que Karl Pearson y W. F. R. Weldom (junto con Galton, que se les unió ideológicamente después) fueron los puntales de la escuela biométrica. En medio de este conflicto, en 1908 se formuló la ley del equilibrio de Hardy-Weinberg, que relaciona las frecuencias génicas con las genotípicas en poblaciones panmícticas o con cruzamientos al azar, lo cual permite cuantificar la evolución. Entre los años 1918 y 1932 la polémica entre biometristas y mendelianos quedó resuelta finalmente: Ronald Fisher, Sewall Wright y J. B. S. Haldane llevaron a cabo la síntesis del darwinismo, el mendelismo y la biometría, y fundaron la teoría de la genética de poblaciones. De manera independiente, Fisher es el responsable directo, y en este sentido la historia (mito o realidad, no es claro todavía) dice que el comité de redacción del Proceedings of the Royal Society de Londres no publicó en 1916 el artículo de Fisher, por la aversión que el comité tenía contra todo lo que tuviera sabor mendelista. Y no fue sino hasta dos años más tarde que Transactions of the Royal Society de Edimburgo lo publicó. En este artículo Fisher desarrolla de manera sumamente elegante el modelo infinitesimal, que es la base de la genética cuantitativa teórica y aplicada a los programas de mejoramiento genético en animales y plantas. En su base teórica proporciona una magistral objetivación de la naturaleza de la variación continua de los caracteres cuantitativos, entendidos como aquellos cuya variabilidad observable se debe principalmente a la segregación de varios loci, que pueden ser modificados por la acción del ambiente. Lo relevante de esta propuesta radica en que los caracteres cuantitativos se pueden entender con una base genética mendeliana discreta. Kempthorne, discípulo de Fisher, reconoce no haberlo entendido en toda su expresión, lo cual lo llevó a escribir su libro An Introduction to Genetic Statistics, para ponerlo al alcance de los genetistas y en general como una propuesta entendible del razonamiento fisheriano desde el punto de vista cualitativo.
 
Por otro lado, el desarrollo de los modelos matemáticos de la acción de la selección natural quitó los velos en cuanto a si esta fuerza microevolutiva podía o no producir cambios importantes, incluso cuando sus coeficientes eran débiles: la selección volvió a adquirir un papel preponderante como proceso evolutivo directriz. Con la genética de poblaciones la teoría de la evolución se presenta como una teoría de fuerzas interactuantes: la selección, la mutación, la deriva genética, la endogamia y la migración. Éstas actúan sobre un acervo genético que tiende a permanecer invariable como consecuencia de la ley del equilibrio de Hardy-Weinberg, que a su vez es una extensión de la primera ley de Mendel (segregación independiente) a las poblaciones. Así, la genética de poblaciones se estableció como el núcleo teórico y el componente explicativo “duro” de la teoría de la evolución. Posteriormente, la integración de la genética de poblaciones con otras áreas como la biología de poblaciones, la sistemática y taxonomía, la paleontología, la zoología y la botánica, generaron durante el periodo comprendido entre 1937 y 1950 la teoría sintética de la evolución. En ésta se produce la mayor integración de disciplinas, nunca antes alcanzada, de una teoría evolutiva.
 
A partir de los cuarentas se aplicaron sistemáticamente las técnicas moleculares, con un éxito extraordinario en la genética. Para esto, el acceso al nivel molecular había comenzado y la estructura y función de los genes era el próximo frente del avance genético. En 1941 George Beadle y E. L. Tatum introdujeron la revolución de Neurospora, estableciendo el concepto de un gen una proteína, por lo que los genes son elementos portadores de información que codifican a las enzimas. En 1944 Oswald Avery, Colin McLeod y Maclyn McCarty demostraron que el "principio transformador" es el adn.
 
El año 1953 representa un momento culminante: James Watson y Francis Crick interpretaron los datos de difracción de rayos X de Maurice Wilkins junto con los resultados de la composición de bases nucleotídicas de Erwin Chargaff, concluyendo que la estructura del adn es una doble hélice, formada por dos cadenas orientadas en sentidos opuestos, esto es: antiparalelas. La estructura de tres dimensiones (3-D) se mantiene gracias a enlaces de hidrógeno entre bases nitrogenadas que se encuentran orientadas hacia el interior de las cadenas. Dicha estructura sugería, de un modo inmediato, cómo el material hereditario podía ser duplicado. Una estructura tan simple proveía la explicación al secreto de la herencia: la base material (adn), la estructura (doble hélice 3-D) y la función básica (portador de información codificada que se expresa y se transmite íntegramente entre generaciones); así, el fenómeno genético era, por fin, explicado. Por lo anterior, no debe sorprendernos que el descubrimiento de la doble hélice se considere el más revolucionario y fundamental de toda la biología; aunque en esta visión en mucho han influido las modas de máxima complejidad de sentirse “biólogo molecular” en los ochentas y noventas.
 
En 1958 Matthew Meselson y Franklin Stahl demostraron que el adn se replicaba de manera semiconservativa. El problema de cómo la secuencia del arn se traduce en secuencia proteica se empezaba a resolver. Un triplete de bases (codón) codifica un aminoácido. Inmediatamente se establece el flujo de la información genética: el Dogma Central de la Biología Molecular. Ese mismo año Arthur Kornberg aisló la polimerasa del adn y en 1959 Severo Ochoa aisló por vez primera el arn polimerasa, con lo que inicia la elucidación del código. En 1961 Sidney Brenner, François Jacob y Meselson descubrieron el arn mensajero. En 1966 Marshall Nirenberg y Har Gobind Khorana terminaron de develar el código genético. Paralelamente a estos descubrimientos, Seymour Benzer publicó sus primeras investigaciones sobre la estructura fina del locus rii en el fago t4. Años antes, en 1961, Jacob y Monod propusieron el modelo del operón como mecanismo de regulación de la expresión génica en procariontes. Charles Yanofsky demostró la colinearidad entre genes y sus productos proteicos, en 1964. Dos años después R. Lewontin, J. L. Hubby y H. Harris aplicaron la técnica de la electroforesis en gel de proteínas al estudio de la variación enzimática en poblaciones naturales, obteniéndose las primeras estimaciones de la variación genética de algunas especies. En 1968 hizo su aparición la teoría neutralista de la evolución molecular, introducida por M. Kimura, que da la primera explicación satisfactoria al exceso de variación genética encontrada en los datos de las electroforesis de enzimas en poblaciones naturales; para esto su propuesta es que gran porcentaje de esa variación es selectivamente neutra y, dado esto, la tasa de sustitución de bases o aminoácidos por mutación, es directamente proporcional a la tasa de evolución: nace el reloj molecular.
Con el inicio de la década de los setentas surgieron técnicas muy sofisticadas de manipulación directa del adn. Así, en 1970 se aislaron las primeras endonucleasas de restricción y H. Temin y D. Baltimore descubrieron la reverso transcriptasa (enzima típica de los retrovirus como el vih). En 1972, en el laboratorio de Paul Berg, se construyó el primer adn recombinante in vitro. El año 1977 fue muy importante, pues se publicaron las técnicas de secuenciación del adn de Walter Gilbert y de Frederick Sanger; Sanger y sus colegas publicaron, a su vez, la secuencia completa de cinco mil trescientos ochenta y siete nucleótidos del fago f x171; varios autores descubrieron que los genes de los organismos eucariontes se encuentran interrumpidos: descubren los intrones. En 1976 salió a la venta The Selfish Gene, del controvertido evolucionista Richard Dawkins; su planteamiento es sencillo: los cuerpos (soma) son efímeros en la evolución, lo que importa es la transferencia de los genes (germen) a las generaciones futuras; así, esta propuesta es un eco weismaniano en el tiempo.
 
Entre 1981 y 1982 fueron creados los primeros ratones y moscas transgénicos. A su vez, Thomas Cech y Sidney Altman, en 1983, descubrieron que el arn tiene funciones autocatalíticas. En ese año M. Kreitman publicó el primer estudio de variación intraespecífica en secuencias de adn del locus Adh (alcohol deshidrogenasa) de Drosophila melanogaster. A principios de la década de los ochentas R. Lande y S. Arnold introdujeron el análisis estadístico multivariado en los estudios de selección fenotípica y genotípica en la naturaleza. A mediados de esa misma década se iniciaron los estudios que abordan el problema de la conservación de la biodiversidad con una perspectiva genética, los cuales prevalecen hasta nuestros días. En 1986 Kary Mullis presentó la técnica de la reacción en cadena de la polimerasa (pcr). En 1990 Lap-Chee Tsui, Michael Collins y John Riordan encontraron el gen cuyas mutaciones alélicas son responsables directas de la fibrosis quística. Ese mismo año Watson y muchos otros lanzaron el proyecto del genoma humano, cuyo objetivo es mapear completamente el genoma de Homo sapiens y, finalmente, determinar la secuencia completa de bases nucleotídicas en esta especie que creó (por llamarle de algún modo) la ciencia genética.
Referencias bibliográficas
 
Berry, R. J. 1982. Neo-Darwinism. Londres, E. Arnold.
Bowler, P. J. 1983. The Eclipse of Darwinism: Anti-Darwinian Evolution Theories in the Decades Around 1900. Baltimore, Universidad John Hopkins.
Bowler, P. J. 1992. The Fontana History of Environmental Sciencies. Fontana Press.
Bowler, P. J. 1989. The Mendelian Revolution: The Emergence of the Hereditarian Concepts in Modern Science and Society. Londres, Athione.
Dunn, L. C. 1965. A Short History of Genetics. Nueva York, McGraw-Hill.
Gardner, E. J. 1972. History of Biology. 3a. ed. Nueva York, Macmillan.
Harris, L. 1981. Evolución. Génesis y revelaciones. Barcelona, Hermann Blume.
Mayr, E. 1982. The Growth of Biological Thought. Diversity, Evolution and Inheritance. Cambridge, Universidad de Harvard.
Moore, J. A. 1993. Science as a Way of Knowing. The Foundations of Modern Biology. Cambridge, Universidad de Harvard.
Olby, R. C. 1991. El camino hacia la doble hélice. Madrid, Alianza.
Olby, R. C. 1966. Origins of Mendelism. Londres, Constable.
Portugal, F. H. y J. S. Cohen. 1977. A Century of dna. Cambridge, mit Press.
Provine, W. B. 1971. The Origins of Theoretical Population Genetics. Chicago, Universidad de Chicago.
Stent, G. S. y R. Calendar. 1978. Genetics: An Introductory Narrative. 2a. ed. San Francisco, Freeman.
Stigler, S. M. 1986. The History of Statistics: The Measurement of Uncertainty Before 1900. Cambridge, Universidad de Harvard.
Stuble, H. 1972. History of Genetics. Cambridge, mit Press.
Sturtevant, A. H. 1965. A History of Genetics. Nueva York, Harper and Row.
Watson, J. D. 1968. La doble hélice. Barcelona, Salvat. 1987.
Watson, J. D. y J. Tooze. 1982. The dna Story. San Francisco, Freeman.
Jorge González Astorga
Instituto de Ecología, A. C.
_______________________________________________________________
 

como citar este artículo

González Astorga, Jorge. (2001). Breve cronología de la genética. Ciencias 63, julio-septiembre, 70-77. [En línea]
    Regresar al índice artículo siguiente

de venta en copy
Número 139-140
número más reciente
 
139I

   
eventos Feriamineriaweb
  Presentación del número
doble 131-132 en la FIL
Minería

 


novedades2 LogoPlazaPrometeo
Ya puedes comprar los 
ejemplares más
recientes con tarjeta
en la Tienda en línea.
   

  Protada Antologia3
 
Você está aqui: Inicio revistas revista ciencias 63 Breve cronología de la genética