![]() |
![]() |
|
|||||||||
Mauricio Schoijet | |||||||||||
En la década de 1980 ocurrieron por lo menos cuatro grandes
accidentes, con un costo humano que oscila, para tres de ellos, entre los miles y centenares de miles de víctimas inmediatas y potenciales a largo plazo, y con un costo material que va de decenas a miles de millones de dólares. Nos referimos a los de Bhopal, San Juan Ixhuatepec, el de la nave espacial Challenger y al del accidente nuclear de Chernobyl. Si bien es cierto que desde los comienzos de la Revolución Industrial en Inglaterra, en el siglo XVIII, han venido sucediendo accidentes imputables a la industria, también es válido preguntarnos si los que hemos mencionado responden a un fenómeno puramente casual, o si la frecuencia con que se presentaron indica una tendencia que inevitablemente debemos asociar al desarrollo de las fuerzas productivas, el que las convierte en destructivas, en el sentido más literal de la palabra.
La cuestión es fundamental para el futuro de la energía nuclear, porque cualquier discusión sobre éste necesariamente debe estar enmarcada por una controversia más amplia, referida a los grandes accidentes, porque los nucleares son los de mayores consecuencias, debido a que sus efectos no sólo abarcan mayores áreas sino que tienen repercusiones a largo plazo que los causados por cualquier otro tipo de desastre de origen humano.
La ciencia comienza a convertirse en la crítica del discurso preexistente, y esto implica la definición de un nuevo campo de problemas. Así viene ocurriendo con la astronomía y la mecánica desde hace ya varios siglos, y así está sucediendo gracias a que los desastres generados por la acción humana ocupan el centro del escenario histórico. El discurso convencional, precientífico, repite que se trata de una cuestión de aprendizaje, y una vez que se tengan los recursos y el tiempo suficientes aprenderemos a manejar con seguridad cualquier tipo de sistemas, por más complejos y peligrosos que estos sean. Hasta ahora la investigación de los accidentes se ha limitado básicamente a aspectos tales como los errores de los operadores y de los diseñadores; a la falta de atención en lo referente a seguridad; al entrenamiento inadecuado de los operadores; a la falta de atención en lo referente a la seguridad; a la carencia de tecnologías más avanzadas; y al manejo deficiente e insuficiencia de recursos. Todo ello demuestra que el centro del discurso se preocupa más de la descripción y el deslinde de responsabilidades, que de analizar las razones profundas del problema, las que necesariamente requieren de la elaboración de un nuevo marco conceptual.
Una primera aproximación científica al estudio de los grandes accidentes, aparece en el libro de Charles Perrow, Normal Accidents: Living with High Risk Technologies1 en la que el autor acepta la existencia de los problemas antes enumerados (ya Daniel Ford los resalta en el análisis detallado que hace del accidente de la central nuclear de Three Mile Island, al referirlos a ese caso en especial),2 pero plantea que están presentes en todos los sistemas tecnológicos de gran tamaño y alta complejidad, y que, por consiguiente, no pueden reflejar las variaciones observadas en la tasa de accidentes para distintos tipos de sistemas. Por ello, explica, deben existir características estructurales que dependen de los sistemas mismos, tales que ningún ajuste tecnológico (technological fix) podría llegar a corregir.
Obviamente no todos los grandes accidentes tienen el mismo rango de potencial destructivo. En este sentido los nucleares son los más peligrosos, porque, como ya explicamos, tienen una prolongada repercusión en cuanto a tiempo y espacio, y pueden llegar a afectar a futuras generaciones, víctimas eventuales de cáncer, leucemia y defectos genéticos. Cuando afectan a personas alejadas del suceso en el espacio y en el tiempo; cuando perjudican no sólo a los operadores directos y al personal relacionado con las operaciones, sino que involucran a víctimas circunstanciales, como son los usuarios lejanos, los fetos y las generaciones futuras, entonces el número de víctimas crece exponencialmente, y aumenta sustancialmente la incertidumbre sobre los riesgos.
Para Perrow, la causa de los accidentes sistémicos o normales no se encuentra en los errores de diseño, ni en los de operación, sino en la complejidad misma de los sistemas. Ello no quiere decir que todos los grandes accidentes —en términos de costos o número de víctimas— sean necesariamente accidentes de este tipo. Estos no incluyen —de acuerdo a las definiciones de Perrow— los accidentes en minas, ni los marinos, ni los ferrocarrileros.
Perrow define como accidente a aquel suceso que produce daños a nivel de subsistema —por ejemplo en el de enfriamiento secundario de una planta nuclear, compuesto por un generador de vapor, unidades de depuración y condensación de agua con sus motores correspondientes, tuberías, etcétera — que afectan al sistema en su totalidad, paralizando su funcionamiento u obligando a detenerlo. El accidente de Three Mile Island lo produjo una acumulación de errores de poca monta, de diseño, de equipo y de operación. Cada uno de ellos era trivial en sí mismo, e incluso pudieron ser de mínimas consecuencias, ya que en cada caso había dispositivos redundantes o auxiliares, pero se volvieron serios sólo gracias a los efectos que se produjeron al interactuar entre ellos. Fue esta interacción de fallas múltiples la que produjo el accidente.
Nuestro autor utiliza varias categorías, entre ellas están: la interactiva, las interacciones fuertes, las funciones de modo común y la incomprensibilidad. Así, los accidentes normales o sistémicos se presentarían como un fenómeno nuevo en la historia de las fuerzas materiales —productivas y destructivas—, como el resultado de la existencia simultánea de la complejidad interactiva y de interacciones fuertes. Un aspecto particular de la complejidad interactiva es la presencia de funciones de modo común, lo que puede acarrear la aparición de una clase particular de fallas: las de modo común. La complejidad de los sistemas aumenta la posibilidad de interacciones imprevistas, y la multiplicidad de los caminos de propagación de las interacciones termina por neutralizar los dispositivos de seguridad. La complejidad de los sistemas no es fortuita, sino que surge por los requerimientos de manejo de sustancias más peligrosas, o porque exigimos que los sistemas funcionen en ambientes más hostiles, o en condiciones físicas cada vez más severas, en cuanto a velocidades, volúmenes, presiones, etcétera.
Una unidad o subsistema funciona de modo común cuando sirve a más de un componente, lo cual equivale a decir que cuando esta unidad o subsistema falla, afecta a dos “modos”. Por ejemplo, un intercambiador absorbe el calor de un reactor químico y lo utiliza para calentar al gas contenido en un tanque, cumple con ello dos funciones, lo que permite el ahorro de energía, luego se trata de un diseño más económico. Si falla, el reactor se recalienta y el tanque se enfría demasiado, lo que impide que se recombinen las moléculas del gas; es decir, fallan dos funciones o “modos”.
La presencia de funciones de modo común es una de las características de la complejidad interactiva. Hay otras, como: la disposición compacta del equipo; la proximidad física de las distintas etapas de un proceso productivo; el exceso de conexiones de modo común entre componentes que no están en la secuencia de producción, etcétera. Al hablar de acoplamiento fuerte nos referimos a la existencia de un gran número de procesos que dependen del tiempo, y que por lo tanto requieren de la atención constante de los operarios. Otra característica es la poca flexibilidad de la secuencia de operaciones, ya que cuenta con sólo un camino para alcanzar el resultado final. Las cantidades deben ser precisas, no se puede sustituir un recurso por otro y los suministros que se desperdician pueden sobrecargar al sistema.
La definición de las interacciones —lineales o complejas— y de los acoplamientos —débiles o fuertes—, permiten elaborar un mapa sobre el cual podemos ubicar varios sistemas de producción, de transporte y militares. Los sistemas más peligrosos son los de mayor complejidad y de acoplamientos fuertes; entre ellos están las plantas nucleares, los sistemas de armas nucleares, las plantas petroquímicas, la manipulación genética con DNA y los sistemas aeroespaciales. La peligrosidad de todos ellos es potencialmente catastrófica, ya que además cuentan, en principio, con pocas medidas adicionales de seguridad. La historia de las plantas petroquímicas sería probablemente el campo más fértil para verificar la hipótesis de Perrow, debido a que se trata de una industria de larga experiencia, a la que podemos suponer bien manejada, y que, además, tienen sustanciales motivaciones económicas para prevenir los accidentes, ya que no puede, como lo hace la nuclear, pasar el costo a los contribuyentes. Las plantas de este tipo han existido durante un siglo. Sin embargo, aquí la investigación se enfrenta con obstáculos de tipo social, porque parece ser mucho más difícil obtener información sobre la industria petroquímica que sobre la nuclear. No existe —por lo menos en Estados Unidos— ningún organismo regulador de esta industria, y por ello tampoco hay información disponible proveniente de fuentes externas a la misma. Los datos que existen sólo los conocen las propias compañías, y de ninguna manera están dispuestos a facilitarlos a investigadores externos. Sin embargo, se han publicado artículos en revistas especializadas como Ammonia Plant Safety, de los que se han obtenido algunos datos significativos, como por ejemplo el que en las plantas de amoniaco se produce, en promedio, un incendio cada once meses. Si en una industria tan establecida los problemas no han sido resueltos quiere decir —argumenta Perrow—, que nos encontramos ante accidentes sistemáticos, o sea que seguirán ocurriendo. Y sugiere que una razón para ello radica en que, a pesar de su larga historia, los procesos fisicoquímicos en que se basa tal industria no están totalmente comprendidos.
Otras tesis se refieren a la incomprensibilidad de los accidentes cuando éstos se producen; a la ineficiencia de los dispositivos redundantes; a la dificultad de mejorar los diseños a partir de la información obtenida en los accidentes, y a la atribución de responsabilidades como campo para la lucha de clases.
La tesis de la incomprensibilidad es sumamente importante para poder entender la conducta y los límites de la responsabilidad de los operadores, y parece estar claramente confirmada por la narración que hace Ford del accidente nuclear de Three Mile Island. En efecto, en sistemas industriales, especiales y militares complejos, las interacciones pueden resultar no sólo inesperadas, sino incomprensibles durante el periodo crítico del tiempo. La contradicción central en relación con los operadores, radica en que los rendimientos del sistema apuntan a un control centralizado —debido a la peligrosidad—; pero al mismo tiempo la incertidumbre debida a la imposibilidad de previsión, plantea la exigencia contraria, o sea, la de que los operarios puedan actuar de manera independiente y, a veces, creativa.
El autor cita un trabajo de E. W. Hagen3 para sostener el que se adicionen componentes redundantes para obtener mayor seguridad ha sido la causa de fallas; o sea que la redundancia no ofrece más garantías, porque la realidad lo es en un mayor nivel de complejidad.
Uno de los efectos de la tendencia al gigantismo y de las condiciones físicas extremas es el que ya no podemos aprender de los errores; en él los diseñadores obtenían valiosísima información, para realizar mejores diseños, del análisis de las causas de desastre tales como el derrumbe de un edificio, del choque de trenes, o de la explosión de calderas; sin embargo, en la actualidad eso ya no es posible; parece que hemos llegado a un límite en que no es factible tal tipo de aprendizaje de las catástrofes que ocurren en plantas químicas o nucleares. En efecto, si la complejidad hace crecer exponencialmente la probabilidad de las interacciones imprevistas, y la tendencia al gigantismo causa un efecto similar para el costo de cada sistema, aprender con base en esas experiencias se hace prohibitivo. Si los accidentes de Three Mile Island y Chernobyl han arrojado al basurero de la historia a los estudios sobre accidentes nucleares que daban cifras extremadamente pequeñas para la probabilidad de desastres (del orden de uno en cien mil a uno en mil millones de años-reactor), por ejemplo el llamado informe Rasmussen, elaborado por encargo de la Comisión de Energía Atómica de los Estados Unidos en 1972, bajo la dirección de Norman Rasmussen, profesor de energía nuclear del Instituto Tecnológico de Massachusetts, constituían no solo un ejercicio de futilidad, sino un abuso de la ciencia. Porque, aunque es cierto que Rasmussen y sus colaboradores hicieron algunos cálculos al respecto, también es cierto que los hicieron basándose en accidentes probables, imaginados por ellos; pero la verdad es que ningún accidente real tuvo nada que ver con cualquiera de los imaginados —hubo varios antes de que Rasmussen presentara sus informes pero se mantuvieron en secreto aunque llegaron a causar importantes pérdidas económicas—. Todos los accidentes reales implicaron secuencias de sucesos imprevistos y se puede suponer, y es una de las suposiciones cruciales de Perrow, que las posibles secuencias de fallas imprevistas, superan ampliamente en número, a las de accidentes que, en el estado actual de nuestros conocimientos, resultan previsibles.
De todo lo anterior podríamos deducir que el problema de la industria nuclear no es el de tener una historia peor que las otras, en cuanto a número y probabilidad de accidentes, sino justamente tener una historia no demasiado diferente, cuando su condición de viabilidad sería precisamente —debido a la peligrosidad de los elementos que maneja— una crónica exenta de desastres.
De la lectura del texto de Perrow surge la idea de que la aparición de la energía nuclear sobre la escena histórica, puede haber funcionado como un detonador que llevara, tanto a científicos como a militantes políticos, a prestar atención a un campo de fenómenos que hasta ahora habían sido no sólo poco estudiados sino sistemáticamente ocultados. Se trataba de un área marginal, en lo relativo a ser un campo de conocimientos, manejado por burócratas de organismos técnicos marginales, que dependen del capital privado y de los gobiernos. Aquellos que podían tener más interés en estudiar el problema desde el punto de vista de las víctimas, (trabajadores y no trabajadores afectados por los accidentes); aquellos que se interesaban por defender a los operadores sobre quienes las burocracias técnicas pretendían descargar las consecuencias de su irresponsabilidad y de su aventurerismo, no disponían de los recursos necesarios, ni tenían acceso a la información más relevante. Por ello, el papel de Perrow en este terreno podría ser similar al que cumplió la bióloga Racher Carson, en la década de 1960, con la publicación de su libro Silent Spring (La primavera silenciosa) sobre los efectos de los plaguicidas, en el que aparecen una enorme cantidad de datos diversos, fuentes especializadas, y lo que es más importante, aun para el caso que nos ocupa, en el que se formaliza un intento de teorización de vasto alcance.
De la narración que hace Ford del accidente de Three Mile Island, se podría deducir que ese accidente fue, en gran medida, el producto de condicionamientos ideológicos. Si éstos, que hacían suponer que los grandes accidentes nucleares eran imposibles, no hubieran existido, entonces la simple capacidad de atención y percepción probablemente habría sido suficiente para tomar medidas preventivas. Pero sin esa ideología de la infalibilidad la energía nuclear tampoco hubiera podido avanzar con la velocidad y la extensión con la que lo hizo. Perrow va más allá que Ford, ya que sugiere que pasado un cierto límite de complejidad de los sistemas, sería imposible, o demasiado costoso, disminuir la probabilidad de accidentes.
El trabajo de Perrow apoya la posición de que se debería abandonar la energía nuclear, por lo menos en el corto y mediano plazo. Pero quedaría por verse si en el largo plazo podrían ser diseñados reactores intrínsecamente seguros, los que deberían ser probados a partir de tamaños más pequeños a lo largo de varias décadas. Creemos que hay razones derivadas de aspectos de la física básica de los reactores, aún no suficientemente estudiados, que preferimos no discutir en el presente texto, pero que apuntan contra esta posibilidad.
El accidente de Chernobyl y los costos económicos crecientes e indeterminados de la energía nuclear —porque el problema de los desechos no ha sido resuelto— han llevado a la parálisis de ésta y aun a su abandono en muchos países. La disyuntiva que planteaba el ecologista David Brower, en 1975, sigue siendo válida. Brower afirmó que “si nosotros, los antinucleares, estamos equivocados, podemos hacer otra cosa (para cubrir las necesidades energéticas). Si ellos —los pronucleares— lo están, estaremos muertos.”4
Los acontecimientos ocurridos después de la publicación del libro de Perrow no solo parecen darle la razón, sino que incluso hacen pensar que en ciertos puntos se quedó corto. Por ejemplo, en relación con los accidentes en plantas químicas, sostiene que han tenido un costo comparativamente bajo, porque en general las plantas de este tipo se ubican en lugares poco poblados. Aparentemente en la India no hay lugares de estas características, y el accidente de Bhopal nos sugiere que la combinación del aventurerismo y la falta de escrúpulos de las burocracias técnicas de los países centrales y de las burguesías periféricas armó la trampa en la que perecieron miles de personas y en la que quedaron permanentemente afectadas decenas o centenares de miles. Por supuesto que el accidente de Chernobyl también le da la razón.
La complejidad de un sistema fisicoquímico como causa de accidentes
El libro de Perrow no se ocupa de las plantas de procesamiento de uranio, pero los datos que proporciona el físico Walter Patteson al respecto, sugieren que este tipo de instalaciones son probablemente aún menos viables que las de producción de energía nuclear.5 El autor incluye una lista de doce plantas terminadas —había varias más en construcción— de las cuales una nunca llegó a operar. De las restantes sólo seis seguían en operación en 1984. Cuatro dejaron de funcionar después de seis años o menos de operación y una después de diez. Aunque no se tienen datos para todos los casos, está claro que estaban plagadas de muy serias dificultades técnicas. La planta británica de Head End, que funcionó sólo durante cuatro años, quedó inutilizada por una explosión ocurrida en 1973, que contaminó a treinta y cinco de sus trabajadores. Sólo cuatro años más tarde fue reconocido el hecho de que a raíz de la explosión, había dejado de funcionar.
La causa del accidente parece ser que se debió a que dentro de los sus productos de fisión contenidos en el combustible nuclear usado, se encuentran pequeñas cantidades de un isótopo radioactivo del rodio, el que es insoluble aun en ácido nítrico caliente, que es el solvente usado en el proceso. Cuando el uranio “quemado” permanece un tiempo suficientemente largo en el reactor, los productos insolubles de fisión se aglomeran en gránulos. Cuando éste fue disuelto en el solvente, los gránulos no lo hicieron, sino que fueron arrastrados por el líquido hasta llegar a un área en la que pudieron asentarse. Durante la operación previa al accidente, los gránulos habían llegado a formar una capa sólida sobre el fondo de uno de los tanques del proceso. El calor producido por la radioactividad evaporó toda traza de líquido, dejándolo al rojo vivo. Cuando éste se puso en contacto con el líquido proveniente de otra masa de combustible, aparentemente se produjo lo que se llama una explosión de vapor —una evaporación violenta seguida de un aumento rápido de presión—, que diseminó una ráfaga de radioactividad hasta el área ocupada por el personal.6, 7
Creemos que esta historia resulta totalmente coherente con la tesis de Perrow.
El accidente que hemos descrito era difícilmente previsible, y esta dificultad de previsión no era casual, sino que es el resultado de una forma de complejidad que Perrow no percibió, por supuesto tampoco los diseñadores.
En efecto, cuando se produce una reacción, o serie de reacciones químicas, más aún si se trata de sistemas químicos complejos, es probable que se produzcan reacciones y productos no previstos, que pueden causar efectos indeseables que tampoco son previsibles. La razón por la que se da esta situación, en el reprocesamiento de combustible nuclear usado es que las reacciones nucleares que se producen en un reactor nuclear, convienen a un sistema físicoquimico, relativamente simple, en uno de los más complejos que puedan imaginarse, en el que están presentes más de cien elementos, algunos de ellos son el producto de reacciones secundarias que terminan por transmutarse en otros, en el curso de algunas horas. Uno de los productos presentes en pequeñas cantidades, es por supuesto, el ya mencionado rodio, pero el que éstas sean pequeñas no significa que lo sean sus efectos. Este no es el único caso; también existe el del llamado envenenamiento por xenón en los reactores, en el que la operación de éstos se ve seriamente afectada por pequeñas cantidades de este elemento, el que, a su vez, se produce por una reacción secundaria.8
Especular sobre los viajes espaciales tripulados y la guerra de las galaxias
Perrow incluye las naves espaciales entre los sistemas complejos propensos a sufrir accidentes sistémicas, y menciona el caso de la nave espacial Apolo, en 1967, en el que tres astronautas murieron en la plataforma de lanzamiento; también consigna el conato de accidente que en 1970 sufrió una nave espacial en viaje a la Luna; este último percance presentó características similares al de Three Mile Island, en cuanto a la dificultad para detectar la causa, y pudo haber tenido las más serias consecuencias. Posteriormente ocurrió el ya mencionado accidente de la nave Challenger, en el que perecieron varios astronautas.
Para especular acerca del futuro de los viajes espaciales podría ser útil recordar la historia aún muy reciente de la aviación. Su primera aplicación comercial fue en 1918 para el transporte de correspondencia, aunque para entonces ya volaban miles de aviones. En esa época la esperanza de vida de un piloto era de cuatro años, o sea que, si suponemos que volaban veinte horas semanales, se podría decir que un accidente fatal se producía al cabo de algunas miles de horas de vuelo.9 Obviamente los aviones actuales son mucho más seguros, y la mayoría de los pilotos llegan a jubilarse después de décadas de vuelo. Esa seguridad se obtuvo a un considerable costo económico y humano, tal vez miles de pilotos y pasajeros murieron antes de que los diseñadores aprendieran a fabricar aviones más confiables.
No tenemos el dato exacto de cuál es el total de horas de vuelo de las naves espaciales, pero creemos que no pasan de miles. Si es así, resultan menos seguras que los aviones de 1920, con la diferencia esencial de que el costo de cada una de ellas es de 108−109 dólares, mientras que un avión de 1920 costaría alrededor de 103 −104 dólares, o sea que existe una diferencia de 105. Si suponemos que para llegar a construir naves espaciales seguras debemos acumular la experiencia de operación de mil o diez mil, ello implica un costo de 1012 ó 1013 dólares, o sea mayor que el producto bruto de los Estados Unidos; además, deberíamos aceptar la posibilidad de que ese proceso resulte muy costoso en términos de vidas humanas, y estaríamos hablando de, tal vez, miles de astronautas. Pero sin lograr un alto grado de seguridad, los vuelos espaciales tripulados a otros planetas, las operaciones industriales en el espacio, la guerra de las galaxias y las colonias espaciales, no pasarán de ser meras fantasías.
|
|
![]() |
|
||||||||
Referencias Bibliográficas
1 Perrow, Charles, 1984, Normal Accidents: Living with High Risk Technologies, Basic Books, New York.
2 Ford, Daniel, 1981, Three Mile Island; Thirty Minutes to Meltdown, Penguins. 3 Hagen, E. W., “Common Mode/Common Cause Failure: A Review”, Nuclear Safety, 21:2, marzo-abril de 1980, p. 184-92; citado en ref. 1, p. 73. 4 Olson, Mc Kinley, 1976, Unacceptable Risk: The Nuclear Power Controversy, Bantam Books, New York, p. 253. 5 Patterson Walter, 1974, The Plutonium Business and the Spread of the Bomb, Paladin Books, Londres, pp. 40-43. 6 Idem, ref. 5, p. 47-50. 7 Patterson Walter, 1985, Going Critical: An Unofficial History of British Nuclear Power, Paladin Books, Londres, pp. 105-109. 8 Patterson Walter, 1982, Nuclear Power, 2nd. Ed., Penguins, pp. 35-36. 9 Idem, ref. 1, p. 125. |
|||||||||||
________________________________________ | |||||||||||
Mauricio Schoijet Universidad Autónoma Metropolitana-Unidad Xochimilco. |
|||||||||||
____________________________________________________________ | |||||||||||
cómo citar este artículo →
Schoijet, Mauricio. 1993. Accidentes tecnológicos. Ciencias, núm. 30, abril-junio, pp. 55-60. [En línea].
|